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We study the q-dependent susceptibility χ (q) of a Z -invariant ferromagnetic Ising
model on a Penrose tiling, as first introduced by Korepin using de Bruijn’s pentagrid
for the rapidity lines. The pair-correlation function for this model can be calculated
exactly using the quadratic difference equations from our previous papers. Its Fourier
transform χ (q) is studied using a novel way to calculate the joint probability for the pen-
tagrid neighborhoods of the two spins, reducing this calculation to linear programming.
Since the lattice is quasiperiodic, we find that χ (q) is aperiodic and has everywhere
dense peaks, which are not all visible at very low or high temperatures. More and
more peaks become visible as the correlation length increases—that is, as the tempera-
ture approaches the critical temperature.

KEY WORDS: Ising model, quasiperiodicity, Fibonacci sequence, pentagrid, Penrose
tiles, Z -invariance, correlation functions, q-dependent susceptibility.

1. INTRODUCTION

In an experiment (1) done in 1984, Shechtman and his coworkers found fivefold
symmetry in the diffraction patterns of some rapidly cooled alloys. As such a
symmetry is incompatible with lattice periodicity, it was concluded that the crys-
talline structures of these alloys, if any, must necessarily be quasiperiodic. This
theoretical explanation came forward almost immediately, as Penrose, de Bruijn,
and Mackay(2−7) had already studied tilings that have fivefold symmetry, well be-
fore this experimental discovery. Quasiperiodic tilings are types of almost periodic
structures that permit sharp peaks in the diffraction patterns, but have normally
forbidden symmetries.(7−12)
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Already in 1986, Korepin(13) introduced a Z -invariant eight-vertex model
on Penrose tiles. The Z -invariant inhomogeneous models are completely
integrable (14) even on irregular lattices and their critical exponents are known
to be the same as those of homogeneous systems on regular lattices. Thus, the
critical behaviors of these quasiperiodic Z -invariant models(14−21) have to be the
same,3 independent of the lattice structure.4

In such models, the order parameter is the same(13,14) for all sites and it
vanishes towards the critical point. Therefore, the Fourier transform of the one-
point function of a Z -invariant Ising model is the product of this order param-
eter and the lattice sum

∑
eiq·r. Experiments that probe the resulting “mag-

netic” Bragg peaks are restricted to the low-temperature phase and the corre-
sponding theory is essentially the zero-temperature theory, well-studied in the
literature. (7,37,38) The aforementioned Bragg peaks will broaden, if we allow the
underlying quasicrystalline lattice to become distorted by lattice vibrations. (39,40)

However, we shall not consider this possibility in this paper, as we assume the
underlying lattice to be a perfect and rigid Penrose tiling, restricting our attention
solely to the ordering of the spins at the lattice sites under thermal fluctuations.

Contrary to the above theory for the Bragg scattering, the situation is far more
complicated for scattering experiments that probe the pair-correlation function
〈σrσr′ 〉 via the wavevector-dependent susceptibility χ (q). This last quantity is
defined as

kBT χ (q) ≡ χ̄(q) = lim
L→∞

1

L
∑

r

∑

r′
eiq·(r′−r)

[〈σrσr′ 〉 − 〈σr〉〈σr′ 〉], (1.1)

where L is the number of lattice sites, r and r′ run through all these sites, and
q = (qx , qy). It is the Fourier transform of the connected pair correlation function,
defined by what is inside the square brackets. Furthermore, χ̄(q) is the reduced
q-dependent susceptibility, taking out a trivial factor involving the absolute tem-
perature T .

In the well-known lattice-gas language it becomes proportional to the struc-
ture function, the Fourier transform of the density-density correlation function,
which is also measurable in diffraction experiments, revealing the symmetry of
the lattice. Thus, the χ (q) in Z -invariant models can indeed be used to show the
difference between quasiperiodic and regular lattices and we expect it to provide

3 Universality of the critical exponents of ferromagnetic Ising models on quasiperiodic lat-
tices has been confirmed for non-Z -invariant cases also using real-space renormalization group
techniques, (22) Monte Carlo simulations,(23−29) series expansion methods,(30−32) and the study of
Yang–Lee zeros.(33−35)

4 Unlike the q-dependent susceptibility, thermodynamic quantities like the free energy, the specific
heat, and the bulk susceptibility do not probe the lattice structure, although subtle lattice effects do
show up in corrections to scaling. (36)
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a diffuse scattering pattern both above and below the critical temperature Tc, with
more structure closer to Tc.

There is good reason to pick a Z -invariant Ising model for our present study
of χ (q). It is taken from the foremost class of models with short-range interactions
allowing exact computations. Moreover, comprehensive extensive studies on spin-
spin correlation functions in nontrivial models with short-range interactions have
been done only for Ising models.(14,41−48) Cited here is just a fraction of the liter-
ature. The accumulative knowledge of these studies has made the calculations in
Z -invariant quasi-periodic Ising models possible. Correlations in other nontrivial
cases are still mostly inaccessible to exact methods of evaluation.

For instance, in 1988, Tracy(49,50) introduced the layered Fibonacci Ising
model, which is not Z -invariant. The row correlation functions in the layered Ising
model are known to be block Toeplitz determinants, (51) of which we still have no
idea how to evaluate them exactly in general, except in a few simpler cases. (51,52)

Tracy has shown that the critical exponent of the specific heat remains unchanged
in such quasiperiodic layered models.

In our previous papers, (53,54) we have studied Fibonacci Ising models whose
spins are on regular lattices, but whose nearest-neighbor interactions are quasi-
periodic. They are special cases of inhomogeneous Ising models whose Hamilto-
nians are given by

−βH =
∑

m,n

(K̄m,nσm,nσm,n+1 + Km,nσm,nσm+1,n), (1.2)

with β ≡ 1/kBT . When the system is periodic, the pair correlations are transla-
tionally invariant. Thus one of the sums in (1.1) can be carried out. For T �= Tc, the
connected correlations decay exponentially as functions of distance.5 Therefore,
only a finite number of short-distance correlation functions are needed for the
calculation of the χ (q) in Eq. (1.1).

For the Ising models considered previously, (53,54) the couplings between
specific nearest-neighbor spin pairs form Fibonacci sequences {Sn} defined
recursively (49) by

Sn+1 = Sn Sn−1, S0 = B, S1 = A, (1.3)

so that S2 = AB, S3 = ABA, S4 = ABAAB and so on. Since this sequence is
quasiperiodic, as arbitrary long subsequences are repeated infinitely often, the
model is also aperiodic. Consequently, the correlations are no longer translationally
invariant. However, the averages of the correlations for two spins at fixed distance
can be evaluated by using a theorem of Tracy. (49)

5 For T = Tc, the correlations decay algebraically, so that we need the Epstein-Ewald summation
formula (55) to take into account the long-distance behavior.
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In our previous works, (53,54) we have found that the various q-dependent
susceptibilities χ (q) of our Fibonacci Ising models are always periodic. They can
have multiple incommensurate everywhere-dense peaks in each unit cell only if the
aperiodic oscillations in the average correlation functions are not negligibly small.
This is true in the mixed case when the interactions are aperiodic sequences of fer-
romagnetic and antiferromagnetic couplings. The number of visible peaks in χ (q)
increases as the correlation length increases. In contrast, in the periodic Fibonacci
Ising lattices with mixed bonds, the visible peaks in the q-dependent susceptibility
are at commensurate positions and their number has a finite maximum.(53)

The ferromagnetic aperiodic Fibonacci Ising lattice, on the other hand, be-
haves almost like the regular Ising model—one peak per unit cell, located at the
commensurate position—because the aperiodic oscillations in its average correla-
tion functions are negligibly small at all temperatures. (53)

The q-dependent susceptibility χ (q) is found to have almost the same be-
haviors for both T < Tc and T > Tc. (53) This is in agreement with the result
of Peter Stephens, who showed that the randomized (disordered) icosahedral
system(56) gives almost the same diffraction pattern as a quasicrystal—which
is in the solid (ordered) phase.

Even though both ferromagnetic and antiferromagnetic edge interactions
are present in the mixed case, the mixed systems in Refs. 53 and 54 are not
frustrated. In fact, their partition functions are equal to the partition functions of
the ferromagnetic models, from which they differ by gauge transformations of
signs. Also, the χ (q) of a fully-frustrated model may not show incommensurate
peaks. (55)

In this paper, we turn our attention to systems with a quasiperiodic lattice
structure.(19−21) More specifically we study a Z -invariant Ising model whose spins
are on vertices of a Penrose fat-and-skinny rhombus tiling with the pentagrid as
its rapidity lines.(5,13,15−17)

1.1. Outline

This paper is organized as follows. In Sec. 2, we introduce a Z -invariant Ising
model on Penrose tiles constructed from a pentagrid, (5) with spins on either the odd
or even sublattice. We show how the pair-correlation functions can be evaluated
in Sec. 3. Section 4 is rather lengthy. In it, a new method of counting all the spin
sites and evaluating the joint probabilities of the occurrence of two neighborhoods
of two spins is given. In Subsec. 5.1, we describe in detail the calculation for the
q-dependent susceptibility for the odd lattice. The results are given in Subsec. 5.2.
In Subsec. 5.3 we present a mapping between the odd and the even sublattices.
Finally, in Sec. 6 we present our conclusions.
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2. PENTAGRID AND PENROSE TILES

In two ingenious papers by the famous Dutch mathematician N.G. de Bruijn,
he relates the non-periodic Penrose tilings in a plane to a pentagrid, (5) which is a
superposition of five grids. Each grid consists of parallel lines with equal spacings
between the lines; the grids may be obtained from one another by rotations of
angles which are multiples of 2π/5. This is shown in Fig. 1. Here some grid lines
of the pentagrid are shown; the arrows on the lines shown in Fig. 1 should be
ignored for the moment, as they will define the direction of the “rapidities” which
we define later.

To describe the pentagrid in mathematical formulas, (5) let

ζ = e2iπ/5, ζ + ζ−1 = 2 cos(2π/5) = p−1 = 1
2 (

√
5 − 1), (2.1)

in which p is the golden ratio. Then, choose γ0, γ1, γ2, γ3, γ4 to be five real
numbers, satisfying

γ0 + γ1 + γ2 + γ3 + γ4 = 0. (2.2)

k0=0

k 1
=

0

k
4 =

0

k
2 =0

k
2 =

1

k0= 1 k0=1
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=
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VVI

VII
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Fig. 1. The pentagrid is a superposition of five grids, each of which consists of parallel equidistanced
lines. These grid lines are the five different kinds of rapidity lines in a Z-invariant Ising model. Arrows
are put on the grid lines, and all of them pointing to the upper half plane. Through a center in one of the
meshes (site for a spin σ ), dashed lines are drawn to split the pentagrid into ten regions I to X. Correla-
tions between σ and σ ′ are different when σ ′ sits in different regions. Five little arrows perpendicular
to the five dashed lines indicate the directions in which the corresponding integers k j , j = 0, . . . , 4,
increase.
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Now the j th grid in the pentagrid consists of lines given by

G j = {z ∈ C|Re(zζ− j ) + γ j = k j , k j ∈ Z}, j = 0, . . . , 4. (2.3)

The pentagrid is called regular, if there is no point in the complex plane C belonging
to more than two of the five grids. This also means, every vertex of the regular
pentagrid is an intersection of no more than two lines. Each vertex is surrounded
by four meshes (which are often called faces in physics).

Now to every point z in the complex plane C, de Bruijn associates an integer
vector �K (z) = (K0(z), . . . , K4(z)) whose five elements are integers given by

K j (z) = �Re(zζ− j ) + γ j, (2.4)

in which �x denotes the “roof of x ,” which is the smallest integer ≥ x . It is easily
seen from (2.4) and (2.3) that whenever z moves across a line of the j th grid, K j (z)
changes by 1. All points in the same mesh (face) have the same integer vector and
the integer vectors of different meshes are different. From Fig. 1, we may already
see that some fraction of the meshes (or faces) becomes infinitesimally small in
size as the number of lines in each grid becomes infinite.

Since every vertex of the regular pentagrid is surrounded by four meshes
(faces), by assigning to each of their four corresponding integer vectors �K (z) =
(K0(z), . . . , K4(z)) a complex number

f (z) =
4∑

j=0

K j (z)ζ j , (2.5)

these four meshes are now mapped to the vertices of a rhombus. More specifically,
to the intersection of two grid lines kr and ks , (r �= s), one assigns a rhombus
in C whose vertices are the four complex numbers f (z), f (z) + ζ r , f (z) + ζ s

and f (z) + ζ r + ζ s assigned to the four surrounding meshes. Clearly, there are
two different kinds of rhombuses: the thick one having angles 72◦ and 108◦ for
r = s ± 1, and the thin one having angles 36◦ and 144◦ for r = s ± 2. In both
rhombuses, all sides have length 1. They are shown in Fig. 2.

In these two papers, (5) de Bruijn also showed that, even though there are
many different choices of γ j in (2.2), many of the resulting pentagrids are shift-
equivalent, that is, they can be obtained from each other by a parallel shift.6

We now assign to each grid line in the grid j , j = 0, . . . , 4, of the pentagrid
a rapidity u j pointing into the upper half plane, as is shown in Figs. 1 and 3. In
Fig. 3, it is also shown how the five grid lines k j = 0, for j = 0, . . . , 4, are shifted
to make the grid regular, again following de Bruijn. (5)

6 He also proved that if ξ ≡ ∑
j γ j ζ

2 j times a power of ζ is not purely imaginary (modulo the principal

ideal of 1 − ζ given by all complex numbers of the form
∑

j n j ζ
j with integers n0, . . . , n4 satisfying

∑
j n j = 0), then the corresponding pentagrid is regular. (5)
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(a) Thick rhombus (b) Thin rhombus

Fig. 2. Spins interacts along the diagonals. All sides have length 1. The long diagonal of the thick
rhombus has length p and the short diagonal of the thin rhombus has length p−1, with p the golden
ratio, given in (2.1). The little arrows perpendicular to the grid (rapidity) lines indicate the directions
in which the integers k j , j = 0, . . . , 4, increase.

The usual Z -invariant Ising model (14,48) is formed by putting spins inside the
meshes, but here, however, the Ising spins are on the vertices of the rhombuses.
There is an one-to-one mapping given by (2.5) relating a mesh in the pentagrid to
a vertex of the Penrose tiling. After the mapping, the grid lines in the pentagrid—
which are also the rapidity lines—become “Conway worms” (no longer straight)
in the Penrose tiling. (57) Since the rapidity lines are used to define commuting
transfer matrices, they do not have to be straight lines.

u0

u1

u4

u2u3

γ0

γ1 γ4

Fig. 3. The five different kinds of rapidity lines u0, . . . , u4 pointing into the upper half plane. The grid
lines k j = 0, for j = 0, . . . , 4, are shifted from the dashed lines to make the pentagrid regular.
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(a) (b)

Fig. 4. (a) The horizontal coupling K (ui , v j ); and (b) the vertical coupling K̄ (ui , v j ).

The model so defined is a special case of the inhomogeneous Z -invariant
eight-vertex model proposed by Korepin.(13,15−17) More specifically, the four-
spin couplings are identically zero, and the eight-vertex model decomposes into
two independent Ising models. The interactions of the Ising spins are along
the diagonals of the rhombuses. The odd and even sublattices are therefore
decoupled. (58,59)

As in the earlier works, (14,48) the coupling K (ui , v j ) between two spins is
represented by a line connecting these two spins, with the arrows of the two
rapidity lines ui and v j on the same side of this line, as shown in Fig. 4(a), while
the line representing the coupling K̄ (ui , v j ) has the arrows of the two rapidity
lines ui and v j on opposite sides, as shown in Fig. 4(b). The edge interactions are
parametrized by

sinh (2K (ui , v j )) = k sc(ui − v j , k ′) = cs(λ + v j − ui , k ′),

sinh (2K̄ (ui , v j )) = cs(ui − v j , k ′) = k sc(λ + v j − ui , k ′). (2.6)

Here λ = K(k ′) is the elliptic integral of the first kind, and k and k ′ = √
1 − k2

are the elliptic moduli; these are convenient temperature variables, assumed to be
the same for all sites.

From Fig. 2, we can see that the lengths of the four diagonals of the two
rhombuses are different. The interactions between the spins are chosen to depend
on the interparticle spacings only, but not on the orientations. Consequently, we
must have

u0 − u1 = u2 − u3 = u4 − u0 = λ + u1 − u2 = λ + u3 − u4. (2.7)

From this, we find

u4 − u1 = 4λ

5
, u2 − u1 = 3λ

5
, u0 − u1 = 2λ

5
, u3 − u1 = λ

5
. (2.8)
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Fig. 5. Two Ising lattices on Penrose tiles. The spins on the odd sublattice (the first Ising model) are
joined by bonds, but the spins on the even sublattice (the second Ising model on the dual lattice) are
denoted by circles without their bonds. The two lattices are independent. The coordination number,
which is the number of adjacent spins connected to a given spin in each sublattice, takes values 3, 4,
5, 6, or 7. Incorporating the two models, a third Ising model can be defined with Ising spins on both
the odd and even sublattices, i.e. the decoupling limit of Baxter’s eight-vertex model on the Penrose
lattice.(13−17)

If we let

s j = k sc( jλ/5, k ′), (2.9)

then for the thick rhombus in Fig. 2(a), we assign s2 to the longer diagonal and s3

to the shorter diagonal, while for the thin rhombus in Fig. 2(b), s4 to the shorter
diagonal and s1 to the longer one. Thus, to the four types of diagonals are assigned
four kinds of couplings according to their lengths, with a stronger coupling for a
shorter interparticle distance.

The two Ising sublattices on the Penrose tiling are indicated in Fig. 5. The
edges in the even sublattice are omitted. There are eight types of vertices S, K, Q,
D, J, S3, S4, S5 in the Penrose tiling, which are shown in Fig. 7 of Ref. 5. The
coordination numbers of spins in the Penrose Ising model are 3 for types Q and
D; 4 for K; 5 for S, J and S5; 6 for S4; 7 for S5.



230 Au-Yang and Perk

3. CORRELATIONS

Two spins σr and σr′ at two different vertices of the Ising lattice just defined
have different integer vectors �K = (K0, . . . , K4) and �K ′ = (K ′

0, . . . , K ′
4). Since

there is a one-to-one mapping between the vertices of the Penrose tiles and the
meshes of the pentagrid, the integer vectors can be used to denote the positions of
the spins: r ↔ �K .

Since each grid consists of parallel lines with equal spacings, the absolute
value of the difference 	 j = K ′

j − K j is actually the number of the j th kind of
rapidity lines sandwiched between these two spins. The correlation functions were
shown(14,48) to be

〈σ �K σ �K ′ 〉 = 〈σσ ′〉[	0,...,	4]

= g(

|	0|
︷ ︸︸ ︷
u′

0, . . . , u′
0,

|	1|
︷ ︸︸ ︷
u′

1, . . . , u′
1,

|	2|
︷ ︸︸ ︷
u′

2, . . . , u′
2,

|	3|
︷ ︸︸ ︷
u′

3, . . . , u′
3,

|	4|
︷ ︸︸ ︷
u′

4, . . . , u′
4), (3.1)

where u′
j = u j for rapidity lines of type j with arrows pointing to the same

side of the line joining the two spins, and u′
j = u j ± λ for rapidities with arrows

pointing to opposite sides of the line. It is as if the rapidities of lines pointing to the
opposite side need to be flipped by adding ±λ, i.e. adding ±π to the angle variable
u jπ/λ. (48) The functions g have both the “permutation symmetry” (which means
that they are invariant under all permutations of the rapidities) and the “difference
property” (which implies a translation invariance under shifting all the rapidities
by the same amount). (14)

We next examine in more detail when we have to choose u′
j = u j or u′

j =
u j ± λ in (3.1). Through a point in the mesh where spin σ sits, as shown in Fig. 1,
we draw five dashed lines parallel to each of the five grids. As the choice of
the point in the mesh is rather arbitrary, the dashed lines should really have been
drawn with a finite thickness, i.e. open strips without their boundaries between two
consecutive grid lines of the pentagrid. Five arrows are also drawn perpendicular
to the dashed lines to indicate the directions in which the integers k j increase. If
the other spin σ ′ is in a mesh crossed by the j th dashed line, i.e. σ and σ ′ lie
within the same strip, then the two spins have the same K j (	 j = 0) and their pair
correlation function does not depend on the value of u′

j . When σ ′ moves away
from this dashed line in the direction of the arrow, we have 	 j ≥ 0, whereas 	 j ≤ 0
if σ ′ moves away in the direction opposite to the arrow. These dashed lines (or
more precisely strips) divide the entire plane into ten regions, and we numbered
them from I to X. From Fig. 1, we can see that (	0, . . . , 	4) have the same signs
inside each region.

If σ ′ is in regions III or VIII, we find from Fig. 1 that the arrows of all
the rapidity lines point to the same side of the line joining the two spins. Thus
u′

j = u j for all five j-values. When σ ′ is in regions II or VII, then the rapidity
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Table I. Rapidities

Regions u′
4 u′

2 u′
0 u′

3 u′
1

I and VI u4 − λ u2 − λ u0 u3 u1

II and VII u4 − λ u2 u0 u3 u1

III and VIII u4 u2 u0 u3 u1

IV and IX u4 u2 u0 u3 u1 + λ

V and X u4 u2 u0 u3 + λ u1 + λ

lines with u4 and the other rapidity lines are pointing to opposite sides of the
line joining the spins, so that u′

4 = u4 − λ and u′
j = u j for j �= 4. For regions IV

and IX the u1 rapidity lines point in the other direction with respect to the other
rapidity lines, implying u′

1 = u1 + λ. If σ ′ is in regions I and VI, the arrows of the
u2 and u4 rapidity lines are on the opposite side and, therefore, u′

4 = u4 − λ and
u′

2 = u2 − λ. Similarly, for regimes V and X, u′
1 = u1 + λ and u′

3 = u3 + λ. For
all other j-values, u′

j = u j . In summary, our choices for u′
j are listed in Table I,

with the u j ’s given in (2.8), where we may set u1 = 0 without loss of generality
in view of the difference property of the pair correlation function. (14)

We may even shift the five rapidity values u′
0, . . . , u′

4 in (3.1) by the same
amount, depending on the choice of region, such that min j u′

j = 0. We can then

also use the permutation property (14) of the pair-correlation function g, given in
(3.1), to rearrange the five resulting rapidity values u′

j in decreasing order as
4
5λ, 3

5λ, 2
5λ, 1

5λ, 0. Therefore, it suffices to calculate the quantity

g[m4, m3, m2, m1, m0]

≡ g

(
m4

︷ ︸︸ ︷
4λ

5
,. . .,

4λ

5
,

m3
︷ ︸︸ ︷
3λ

5
,. . .,

3λ

5
,

m2
︷ ︸︸ ︷
2λ

5
,. . .,

2λ

5
,

m1
︷ ︸︸ ︷
λ

5
,. . .,

λ

5
,

m0
︷ ︸︸ ︷

0, . . . , 0

)

, (3.2)

where the m j ’s are nonnegative integers depending on the 	 j ’s and the choice
of region. To determine this dependence, we can first use (2.8), from which we
find u3 + λ > u1 + λ > u4 > u2 > u0 > u3 > u1 > u4 − λ > u2 − λ. Compar-
ing (3.1), Table I and (2.8) we can then express all pair correlations in the form (3.2).
We list the results for the ten different regions in Table II. This completes, more or
less, the calculation of the pair correlation function, as we can refer to our previ-
ous papers (54,60) for further details on how to evaluate the g[m4, m3, m2, m1, m0]
defined in (3.2).

Since the pentagrid is invariant under rotations by angles that are integer
multiples of 2π/5, the grids may be relabeled m → m + j , (mod 5). Then the
differences of the five integer vectors of the two spins are also relabeled 	m →
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Table II. Pair-Correlation Function

Regions Signs of (	0, 	1, 	2, 	3, 	4) 〈σσ ′〉[	0,...,	4] =
I & VI (+,+,+, −,−) & (−,−,−, +,+) g[|	0|, |	3|, |	1|, |	4|, |	2|]
II & VII (+,+,−, −,−) & (−,−,+, +,+) g[|	2|, |	0|, |	3|, |	1|, |	4|]
III & VIII (+,+,−, −,+) & (−,−,+, +,−) g[|	4|, |	2|, |	0|, |	3|, |	1|]
IV & IX (+,−,−, −,+) & (−,+,+, +,−) g[|	1|, |	4|, |	2|, |	0|, |	3|]
V & X (+,−,−, +,+) & (−,+,+, −,−) g[|	3|, |	1|, |	4|, |	2|, |	0|]

	m+ j . This shows that the pair correlation function must have the cyclic property

〈σσ ′〉[	0,	1,	2,	3,	4] = 〈σσ ′〉[	 j ,	 j+1,	 j+2,	 j+3,	 j+4], (mod 5). (3.3)

From Table II, we indeed find that this property holds.

4. ENUMERATION OF SITES

As mentioned in the introduction in the context of the Fibonacci Ising
model, (53,54) to calculate the q-dependent susceptibility (1.1) for lattices for which
the correlations are not translationally invariant, one needs to find a way to cal-
culate suitable averages of the pair-correlation function. Since the meshes in the
pentagrid—and even the distances between them—can be infinitesimally small in
the thermodynamic limit, the problem of counting all the spin sites must be first
solved.

We proceed by considering in detail the parallelograms bounded by two sets
of parallel grid lines in the pentagrid and examining all possible spin sites in each
of these parallelograms. Let P(k j , k j+1) denote the parallelogram sandwiched
between four grid lines k j − 1, k j , k j+1 − 1 and k j+1 for any j . (Throughout the
entire paper, we let k j+5 ≡ k j , i.e. the index j is considered mod 5.) Obviously, for
all points z ∈ P(k j , k j+1), we have K j (z) = k j and K j+1(z) = k j+1. The different
choices of j give the different orientations of the parallelograms. Next, we deter-
mine how many spin sites a parallelogram may have, what are the integer vectors
for these spins, etc. Since this section is rather lengthy, we have subdivided it into
many parts, and put the main conclusion at the end.

4.1. Reference Vector for P

The vertices of parallelogram P(k j , k j+1) can be calculated from (2.3) as the
intersections of grid lines in grids G j and G j+1, i.e.

G j ∩ G j+1 =
{

z ∈ C

∣
∣
∣
∣ z = i [ζ j (k j+1−γ j+1) − ζ j+1(k j −γ j )]

sin(2π/5)

}

, (4.1)
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for k j , k j+1 ∈ Z. Moreover, any point z in the interior of P(k j , k j+1) may be
expressed in terms of ε = (ε j , ε j+1), with 0 ≤ ε j , ε j+1 ≤ 1, as

z = i [ζ j (k j+1−γ j+1−ε j+1) − ζ j+1(k j −γ j −ε j )]

sin(2π/5)
≡ z(ε), (4.2)

allowing us a change of notation K j+m(ε) ≡ K j+m(z(ε)) for z ∈ P .
The four corners of parallelogram P(k j , k j+1) are given by ε= (0, 0), (0, 1),

(1, 0), or (1, 1) as can be seen from (4.1). Now for each P(k j , k j+1), we pick a
reference integer vector (k0, . . . , k4), which is related to the integer vector of the
corner of P(k j , k j+1) with ε = (0, 0). Apart from the obvious identities k j = K j (0)
and k j+1 = K j+1(0), we have

k j+2 = K j+2(0)

= �p−1(k j+1 − γ j+1) − k j + γ j + γ j+2 = �α − k j ,

k j+4 = K j+4 (0)

= �p−1(k j − γ j ) − k j+1 + γ j+1 + γ j+4 = �β − k j+1, (4.3)

in which

α ≡ α̂(k j+1) ≡ p−1(k j+1 − γ j+1) + γ j + γ j+2,

β ≡ β̂(k j ) ≡ p−1(k j − γ j ) + γ j+1 + γ j+4. (4.4)

However, for the last component of the reference integer vector we choose

k j+3 = 2 − �α − �β = −�α� − �β� �≡ K j+3(0), (4.5)

where �x� denotes the “floor of x ,” which is the largest integer ≤ x and �x� = �x
if and only if x ∈ Z. Since the pentagrid is regular, we find α, β /∈ Z and the second
equality in the above equation holds. The index of any mesh, whose integer vector
is �K (z), is defined as

∑
j K j (z). It is shown by de Bruijn (5) that it has one of the

four possible values, 1, 2, 3, or 4. We associate odd spins to meshes with index
1 or 3, and even spins to meshes with index 2 or 4. The index of the reference
integer vector is

∑
j k j = 2.

From (2.4) and (4.2) we find

K j+3(0) = �−p−1(k j+1 − γ j+1 + k j − γ j ) + γ j+3) = �−α − β. (4.6)

Using

{x} = x − �x�, �−x − y = −�x� − �y� + �−{x} − {y} (4.7)

and comparing (4.5) with (4.6), we find

K j+3(0) =
{

k j+3 − 1 for {α} + {β} ≥ 1,

k j+3 for {α} + {β} < 1.
(4.8)
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This shows the mesh below the upper right corner with ε = (0, 0) belongs to
the even sublattice and its integer vector is the reference vector of P only for
{α} + {β} < 1, but not for {α} + {β} ≥ 1.

It would be more natural to choose this corner as our reference and to compare
the integer vectors of other spins inside P ≡ P(k j , k j+1) with it. This was what we
did originally. However, we find that the rather odd choice of the reference vector
given by (4.3) and (4.5), which may not even be the integer vector of a mesh,
has made calculations much simpler. We next examine the differences between
the integer vectors of the other spins in P(k j , k j+1) with respect to this reference
vector.

4.2. Integer Vectors for z ∈ P

Substituting (4.2) into (2.4) and using (4.3) and (4.5), we evaluate the integer
vectors �K (ε) for every point in P that is not on a grid line of the pentagrid. We
find that its components for m = 2, 3, 4 are given by

K j+m(ε) = k j+m + ∂K j+m(ε),

∂K j+m(ε) = �λ j+m(ε) − 1 = �λ j+m(ε)�, (4.9)

with

λ j+2(ε) = {α} + ε j − p−1ε j+1, λ j+4(ε) = {β} + ε j+1 − p−1ε j (4.10)

and

λ j+3(ε) = p−1(ε j + ε j+1) − {α} − {β} + 1. (4.11)

The last equality in (4.9) does not hold if λ j+m(ε) is an integer, i.e. if the point
is on a grid line of grid G j+m. If we define the difference vector ∂ �K (ε) for each
mesh in P as7

∂ �K (ε) = [
∂K j+2(ε), ∂K j+3(ε), ∂K j+4(ε)

]
, (4.12)

then for {α} + {β} > 1, we have ∂ �K (0) = [0,−1, 0], and for {α} + {β} < 1,
∂ �K (0) = [0, 0, 0].

For fixed γ j ’s with j = 0, . . . , 4, which are the shifts of the pentagrid, the
α̂(k j+1) and β̂(k j ) in (4.4) are uniquely determined for each P(k j , k j+1). Conse-
quently, the number of meshes in P and the difference vectors ∂ �K for each mesh
are uniquely determined by (4.9) to (4.11). The configurations of two parallel-
ograms P and P ′ are the same, if they have the same number of meshes (spin
sites), and the same sets of difference vectors. The difference in the configurations

7 In our notation we suppress the two trivial components ∂K j (ε) ≡ ∂K j+1(ε) ≡ 0, since in parallelo-
gram P we have by definition K j (ε) ≡ k j , K j+1(ε) ≡ k j+1.
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does not depend on the exact locations of the relevant grid lines or their inter-
sections. However, whenever a grid line or an intersection moves in or out of the
parallelogram P(k j , k j+1), the configuration changes.

4.3. Relevant Grid Lines

It is easy to see from (2.4) that ∂K j+m(ε) changes its value whenever lines in
the ( j +m)th grid are crossed. Because 0 ≤ {x}, ε j , ε j+1 < 1, we find from (4.10)
and (4.11) that

−1 < λ j+2(ε), λ j+4(ε) < 2, −1 < λ j+3(ε) < 3. (4.13)

Consequently, the only relevant grid lines for the parallelogram P(k j , k j+1) are
those having integer labels k j+2 − 1 + n′, k j+3 − 1 + m, or k j+4 − 1 + n, with
n, n′ = 0, 1 and m = 0, 1, 2. Indeed, these are the only integer values that the
K j+m(ε) in (4.9), or k j+m − 1 + �λ j+m(ε), can assume. The loci of these lines
are given by linear equations in ε j and ε j+1 as

λ j+2(ε) = n′, λ j+3(ε) = m, λ j+4(ε) = n. (4.14)

From (4.10), we find

0 < λ j+2(ε) < 2 if {α} > p−1,

0 < λ j+4(ε) < 2 if {β} > p−1. (4.15)

Therefore the equation λ j+2 = 0 (λ j+4 = 0) cannot be satisfied if {α} > p−1

({β} > p−1), while equations λ j+2 = 1 and λ j+4 = 1 always have solutions in P .
This means that the only grid lines in grids G j+2 and G j+4 crossing P are given
by

k j+2, k j+4 ∈ P always,

k j+2 − 1 ∈ P if {α} < p−1,

k j+4 − 1 ∈ P if {β} < p−1. (4.16)

From (4.11) we find that the grid lines k j+3 + m are parallel to the diagonal
ε j + ε j+1 = 1, and

1 − p−3 < λ j+3(ε) < 2p−1+1 if 0 < {α} + {β} < p−3,

0 < λ j+3(ε) < 2 if p−3 < {α} + {β} < 1,

−p−3 < λ j+3(ε) < 2p−1 if 1 < {α} + {β} < 2p−1,

−1 < λ j+3(ε) < 1 if 2p−1 < {α} + {β} < 2, (4.17)

where we used the identity p−3 = 2p−1 − 1. This means, there can be at most
two lines of grid G j+3 going through the inside of the parallelogram. We find that
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λ j+3 = 2 has a solution in P if 0 < {α} + {β} < p−3; λ j+3 = 1 has a solution in
P for 0 < {α} + {β} < 2p−1; λ j+3 = 0 has a solution in P for 1 < {α} + {β}.
These facts can be summarized as

k j+3 + 1 ∈ P if {α} + {β} < p−3 =
√

5 − 2,

k j+3 ∈ P if {α} + {β} < 2p−1 =
√

5 − 1,

k j+3 − 1 ∈ P if {α} + {β} > 1. (4.18)

At this point one may note the symmetry under k j+2 ↔ k j+4 and α ↔ β in
conditions (4.16) and (4.18).

4.4. Intersections of the Grid Lines

Next, we need to calculate the positions of the intersections. We let an,m denote
the intersection of a pair of grid lines in G j+3 and G j+4 numbered k j+3−1+m
and k j+4−1+n, bn′,m the intersection of lines k j+3−1+m and k j+2−1+n′ in
G j+3 and G j+2, while cn,n′

the intersection of lines k j+4−1+n and k j+2−1+n′

in G j+4 and G j+2. The locations of these intersections are found by solving the
corresponding linear equations given in (4.14). We find

an,m = (
p({β} − n) + m + n − 1 + {α}, p−1({α} + n + m − 1)

)
, (4.19)

bn′,m = (
p−1({β} + m + n′ − 1), p({α} − n′) + m + n′ − 1 + {β}), (4.20)

cn,n′ = (
pn′ + n − p{α} − {β}, pn + n′ − {α} − p{β}). (4.21)

Clearly, whenever both components (ε j , ε j+1) of an intersection are positive and
less than 1, it is inside the parallelogram P(k j , k j+1). This way, we find from (4.19)
the conditions for the three possible cases, namely

a0,1 ∈ P(k j , k j+1) if {β} < p−1 − p−1{α},
a1,0 ∈ P(k j , k j+1) if {β} > 1 − p−1{α},

a1,1 ∈ P(k j , k j+1) if

{
0 < {α} < p−1 and

p−2− p−1{α}<{β}<1− p−1{α}. (4.22)

Similarly, from (4.20) we obtain

b0,1 ∈ P(k j , k j+1) if {β} < 1 − p{α},
b1,0 ∈ P(k j , k j+1) if {β} > p(1 − {α}),

b1,1 ∈ P(k j , k j+1) if

{
0 < {β} < p−1 and

p−2− p−1{β}<{α}<1− p−1{β}, (4.23)
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and from (4.21) we get

c0,1 ∈ P(k j , k j+1) if p−1− p{α}<{β}< p−1(1−{α}),
c1,0 ∈ P(k j , k j+1) if p−2− p−1{α}<{β}<1− p{α},
c1,1 ∈ P(k j , k j+1) if {β} > max(1− p−1{α}, p− p{α}). (4.24)

Note the symmetry between (4.22) and (4.23) and between the first two lines of
(4.24) under α ↔ β and implicitly k j+2 ↔ k j+4.

Three lines cannot exactly meet in a common intersection, as was shown by
de Bruijn (5) for a regular pentagrid. However, they can meet arbitrarily close and
the theoretical limiting conditions of triple intersection

“ a1,0 = b1,0 = c1,1 ” ⇐⇒ {α} + {β} = p,

“ a0,1 = b1,1 = c0,1 ” ⇐⇒ {α} + {β} = p−1,

“ a1,1 = b0,1 = c1,0 ” ⇐⇒ {α} + {β} = p−1, (4.25)

play a role in the following subsection.

4.5. The Twenty-Four Allowed Configurations

Next, we use (4.16), (4.18), (4.22)–(4.25) to study how the configuration
C(m) of parallelogram P(k j , k j+1) depends on the values of {α} = {α̂(k j+1)} and
{β} = {β̂(k j )}. We show the various cases in Fig. 6 for j =0. For j �=0 we need to
rotate each picture j times 72◦.

For {α}, {β} > p−1, the three grid lines k j+2, k j+3−1, k j+4 and their three
intersections a1,0, b1,0, c1,1 are inside the parallelogram, producing seven meshes
in P(k j , k j+1), as shown in Figs. 6(a) and (b). The difference between the two cases
is that the intersection c1,1 is on opposite sides of the grid line k j+3−1, as the sign
of {α} + {β} − p changes, cf. (4.25). The grid line k j+3−1 moves upward toward
the upper right corner as {β} decreases. It is below the diagonal ε j + ε j+1 = 1 for
{α} + {β} > p, corresponding to Fig. 6(a), and above the diagonal for {α} + {β} <

p, as shown in Fig. 6(b). The index of the inner triangle changes from odd to even in
view of (4.10), (4.11) and (4.14). Hence, the spin configurations for the two cases
are different: C(1) in Fig. 6(a) has 4 odd sites and 3 even sites, and C(2) shown in
Fig. 6(b) has 3 odd sites and 4 even sites. Also, C(1) is the only configuration for
which the reference integer vector does not correspond to an actual mesh.

For {α} > p−1 and 0 < {β} < p−1, we have six cases denoted by C(3) to C(8)
arranged in the decreasing order of {β}. For 1 − p−1{α} < {β}, the configuration
C(3) is almost the same as C(2) except having one more even site because line
k j+4−1 is now inside the parallelogram, as shown in Fig. 6(c). As {β} decreases,
line k j+4 moves downward and for 2p−1−{α} < {β} < 1 − p−1{α}, the intersec-
tions of line k j+4 with lines k j+3−1 (a1,0) and k j+2 (c1,1) are seen from (4.22)
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Fig. 6. The spin configurations C(m), m = 1, . . . , 24, for parallelogram P(k0, k1) are shown in (a)
through (x), where N denotes the total number of spin sites inside P(k0, k1), No the number of odd
spins sites, and Ne the number of even spin sites. The mesh that contains the dot is the special even
site whose integer vector is the reference integer vector for P(k0, k1), such that ∂ �K = (0, 0, 0). For
{α} + {β} > p, such a site does not exist, as seen in 6(a). For {α} + {β} < 1, this site is the mesh right
below the upper right corner of P .

and (4.24) to be outside of P(k j , k j+1). As a result, two of the even sites are now
outside, and C(4), shown in Fig. 6(d), has only six sites, three of which are odd,
and three even.

As {β} decreases further to p(1−{α}) < {β} < 2p−1−{α}, line k j+3 is
now inside P(k j , k j+1), as seen from (4.18). Thus, configuration C(5), shown
in Fig. 6(e), has one more even site than C(4). Both lines k j+3 and k j+3−1 move
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Fig. 6. Continued. The remaining twelve configurations. The number of spin sites N varies between
6 and 12, whereas No and Ne vary between 3 and 7.

upward as {β} decreases. For 1−{α} < {β} < p(1 − {α}), the intersection b1,1 of
line k j+3 with k j+2 moves inside of P(k j , k j+1), while b1,0, which is the intersec-
tion of k j+3−1 and k j+2, moves out, giving rise to configuration C(6) shown in
Fig. 6(f), with three even sites and four odd sites.

For p−1(1−{α}) < {β} < 1−{α}, line k j+3−1 moves out of P , as shown in
Fig. 6(g). Its configuration C(7) has 3 odd sites and 3 even sites differing from
C(6) in that the odd site with ∂ �K (0) = (0,−1, 0) is now outside P(k j , k j+1). For
0 < {β} < p−1(1−{α}), the intersections a0,1 and c0,1 of line k j+4 − 1 with k j+3
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and k j+2 are now seen from (4.22) and (4.24) to be inside of P(k j , k j+1) adding
2 more odd sites to C(8), which is shown in Fig. 6(h).

In Fig. 6(i) through Fig. 6(n), the six cases C(9) through C(14) are shown
for {α} < p−1 and {β} > p−1. Because of (4.3) and (4.4) we can use the reflec-
tion symmetry {α} ↔ {β}, k j ↔ k j+1, k j+2 ↔ k j+4, which was noted also in the
previous subsections. Thus these cases are similar to the configurations C(3) to
C(8), and obtainable simply by replacing k j+4 + n by k j+2 + n and vice versa. To
summarize, we find C(9) has 3 odd sites and 5 even sites; C(10) 3 odd sites and
3 even sites; C(11) 3 odd sites and 4 even sites; C(12) 4 odd sites and 3 even sites;
C(13) has 3 odd sites and 3 even sites, and C(14) 5 odd sites and 3 even sites.

For {α}, {β} < p−1, at least five grid lines k j+2, k j+2−1, k j+3, k j+4 and
k j+4−1 are inside P(k j , k j+1). In Fig. 6(o), we show configuration C(15) valid for
1 < {α} + {β}, when both lines k j+3 − 1 and k j+3 and the intersections b1,1 and
a1,1 are inside P(k j , k j+1), as seen from (4.22) and (4.23). Configuration C(15)
has 4 odd sites and 5 even sites.

For the region satisfying the three inequalities {β} < 1−{α}, {β} > 1− p{α}
and {β} > p−1(1−{α}), grid line k j+3 and the corresponding odd site with ∂ �K =
(0,−1, 0) are now outside P(k j , k j+1), such that configuration C(16) shown in
Fig. 6(p) has one site less than C(15). It has 3 odd and 5 even sites.

For 1− p{α} < {β} < p−1(1−{α}), the intersections a0,1 and c0,1 of line
k j+4−1 are both also inside P(k j , k j+1), as seen from (4.22) and (4.24), adding
two odd sites to C(16). Thus, C(17) in Fig. 6(q) has 5 odd sites and 5 even. However,
for p−1(1−{α}) < {β} < 1− p{α} the intersections b0,1 and c1,0 of lines k j+2−1
are now inside instead, adding two different odd sites to configuration C(16). The
resulting configuration C(18) shown in Fig. 6(r) also has ten sites and relates to
C(17) by the above reflection symmetry.

When both conditions p−1− p{α} < {β} < 1− p{α} and p−2− p−1{α} <

{β} < p−1(1−{α}) are satisfied, we find six intersections a1,1, b1,1, a0,1, b0,1, c0,1

and c1,0 inside P(k j , k j+1). As a result, there are 12 sites for the two cases C(19)
and C(20) shown in Fig. 6(s) and (t) respectively. The difference between the two
cases is that the intersections c0,1 and c1,0 are on opposite sides of the grid line
k j+3, as the sign of {α} + {β} − p−1 changes, cf. (4.25). For {α} + {β} > p−1,
line k j+3 lies below the diagonal, as can be seen from (4.11) and (4.14), so that its
configuration C(19) has 7 odd sites and 5 even sites; for {α} + {β} < p−1, k j+3 is
above the diagonal, and C(20) has 5 odd sites and 7 even sites.

For p−1− p{α} < {β} < p−2− p−1{α}, intersections a1,1 and c1,0 are no
longer inside P(k j , k j+1). As a consequence two of the even sites are now
outside, leaving C(21) shown in Fig. 6(u) with 5 odd sites and 5 even. For
p−2− p−1{α} < {β} < p−1− p{α}, however, intersections b1,1 and c0,1 are out-
side P(k j , k j+1) instead, such that two different even sites are now outside. The
resulting configuration C(22) shown in Fig. 6(v) has the same 5 odd sites as C(21),
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but a different set of 5 even sites. Again, C(21) and C(22) are related by the
aforementioned reflection symmetry.

For {β} < p−2− p−1{α} and {β} < p−1− p{α}, only two intersections a0,1

and b0,1 are still inside P(k j , k j+1). These are the cases C(23) and C(24) shown in
Fig. 6(w) and (x). For {β} + {α} > p−3, configuration C(23), shown in Fig. 6(w),
has eight sites: 5 odd and 3 even. Finally, for 0 < {β} < p−3−{α}, the grid line
k j+3 + 1 is inside P , so that C(24) shown in Fig. 6(x) has nine sites, of which the
5 odd sites are identical to those of C(20) through C(23).

In summary, the boundaries for the above 24 regions are the 13 lines given
by

{α} = p−1, {β} = p−1,

{β} + {α} = p−3, p−1, 1, 2p−1, or p,

{β} + p−1{α} = p−2, p−1, or 1,

{β} + p{α} = p−1, 1, or p, (4.26)

which are also the boundaries of the inequalities in (4.16), (4.18), (4.22), (4.23) and
(4.24), together with the two conditions in (4.25). These are exactly all conditions
for three grid lines to meet at a corner of P , on an edge of P , or inside of
P , respectively, i.e. the only conditions under which some mesh can appear or
disappear in P under shifts of grid lines.

In Fig. 7(a), we plot the boundaries lines given by (4.26) in the unit square
with {α} and {β} along the horizontal and vertical axes. These lines indeed divide
the unit square into 24 regions. Each of these 24 regions corresponds to a different
configuration of the parallelogram P(k j , k j+1). The above analysis shows that
the parallelograms can only have 6, 7, 8, 9, 10 or 12 sites inside. The position
of {α̂(k j+1)} and {β̂(k j )} in the unit square shown in Fig. 7(a) determines which
configuration the parallelogram P(k j , k j+1) is in.

The areas of the 24 regions in Fig. 7(a) can be easily calculated. We find, after
using the formula of the area of a triangle in terms of the coordinates of its three
vertices,

A(1) = A(2) = 5
2 − 3

2 p = 1
2 p−4,

A(3) = A(5) = A(6) = A(8) = A(9) = A(11) = A(12)

= A(14) = A(19) = A(20) = 5
2 p − 4 = 1

2 p−5,

A(4) = A(7) = A(10) = A(13) = A(15) = A(17) = A(18)

= A(21) = A(22) = A(24) = 13
2 − 4p = 1

2 p−6,

A(16) = A(23) = 9p − 29
2 = 1

2 p−3 − p−6. (4.27)

The areas of all 22 triangular areas differ by powers of the golden ratio p.
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Fig. 7. (a) The 24 regions for the 24 different configurations are shown within the unit square with
{α} and {β} along the horizontal and vertical axes. The integer m denotes the mth region for the mth
configuration. (b) The 8 regions for the 8 different odd configurations are shown.

For later reference, we display in Fig. 7(b) the eight different regions with
equivalent odd configurations. Two odd configurations are equivalent, if they have
an equal number of odd sites with the same sets of integer vectors for these odd
sites. This identification can be most easily made using the information in Tables
III(a) and III(b) below.

4.6. Probability

From the definition (4.4), we find that the fractional parts {α̂(k j+1)} and
{β̂(k j )} are related to the golden ratio p which is irrational. From the well-known
theorem of Kronecker, (62) we conclude that {α̂(k j+1)} and {β̂(k j )} are everywhere
dense and uniformly distributed in the interval (0, 1), as the integers k j and k j+1

vary from −∞ to ∞. As a consequence, every point in the unit square in Fig. 7
is equally probable. Therefore, the frequency or probability for a parallelogram to
be in one of the twenty-four configurations, say m, is given by the area A(m) of
the mth region.

Although the pentagrids are different for different choices of the shifts γ j ,
and the values of {α̂(k j+1)} and {β̂(k j )} are also different for different γ j ’s, this
does not change the probability distributions of {α̂(k j+1)} and {β̂(k j )} in the
thermodynamic limit of k j and k j+1 varying from −∞ to ∞. In other words, the
area A(m) for the mth configuration is independent of the γ j ’s, and is the same for
all regular pentagrids.

4.7. Difference Vectors

For {α} + {β} > 1 the grid line k j+3−1 is seen from (4.18) to be inside
P(k j , k j+1). Consequently, the mesh below corner ε = (0, 0) is odd and ∂ �K =
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(0,−1, 0). For {α} + {β} < 1, line k j+3 − 1 is outside P(k j , k j+1), and the mesh at
corner ε = (0, 0) is even. In this case, its integer vector is identical to the reference
vector for P(k j , k j+1) with ∂ �K (0) = (0, 0, 0). The difference vectors ∂ �K for all
other meshes in the parallelograms in each of the twenty-four configurations can
be easily obtained from Fig. 6, as ∂K j+m changes its values only when a lines in
the ( j + m)th grid is crossed.

In Tables III(a) and III(b), we list for each of the 24 configurations
all the difference vectors ∂ �K = (∂K j+2, ∂K j+3, ∂K j+4), with Table III(a) for
{α} + {β} > 1 and Table III(b) for {α} + {β} < 1. From these tables one can also
immediately read off which regions have equivalent odd (or even) configurations.

4.8. Average Number N
We shall now calculate N , which is the average number of spin sites in a

parallelogram. The total number of sites can be evaluated by counting all the sites
in each parallelograms P(k j , k j+1), and then adding all of them together for all the
P’s. This is equivalent to splitting the summation over all sites into two parts—first
summing over all sites in P represented by their integer vectors �K (ε) and then
adding all of them for all the parallelograms. Let there be M lines in each of the
five grids, so that there are M2 parallelograms, ignoring boundary effects that
cancel in the thermodynamic limit. The average N then equals the total number
of lattice sites divided by M2.

We have already shown that each parallelogram P(k j , k j+1) is in one of 24
configurations C(m) uniquely determined by the values of {α̂(k j+1)} and {β̂(k j )}.
The allowed configurations C(m) have N (m) = 6, 7, 8, 9, 10 or 12 sites inside
P . The frequency or probability A(m) is defined as the number of parallelograms
in the mth configuration divided by the total number of parallelograms. If we let
k j and k j+1 in P(k j , k j+1) run over the M values, each of the parallelograms is
counted once.

As M approaches ∞, so that −∞ < k j , k j+1 < ∞, the values of {α̂(k j+1)}
and {β̂(k j )} are everywhere dense and uniformly distributed(62) between 0 and 1.
The frequency A(m) is the area of the mth region in the unit square in Fig. 7(a).
The values of these A(m)’s are listed in (4.27). Denoting the number of sites in the
mth configuration by N (m), with values also given in the captions of Fig. 6, then
the average number of sites per parallelogram is

N = 1

M2

∑

�K (z∈C)

1 = 1

M2

∑

all P

∑

�K (z∈P)

1 (4.28)

M→∞−→
24∑

m=1

A(m)
N (m)∑

n=1

1 =
24∑

m=1

A(m)N (m) = 5p. (4.29)
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where we have used the notation �K (z ∈C) to denote the integer vectors of all the
meshes in the pentagrid, while �K (z ∈ P) denotes only those meshes in parallelo-
gram P .

4.9. Penrose Tiles

The above method provides an alternative way to draw the Penrose tiles. To
illustrate this, we let j = 0. For some fixed shifts γ j , we let −J ≤ k0, k1 ≤ J
for some positive integer J . For any values k0 and k1 in this set, {α̂(k1)}, {β̂(k0)}
are uniquely determined from (4.4). The elements km, for m = 2, 3 ,4, of the
reference vector in P(k0, k1) are given by (4.3) and (4.5). From the values of
{α̂(k1)} and {β̂(k0)}, we can determine from Fig. 7(a), what configuration C(m)
the parallelogram P(k0, k1) is in. Then we can use Tables III(a) and III(b) to obtain
the difference vectors ∂ �K for the N (m) sites inside P(k0, k1). The integer vectors
for these different sites in P(k0, k1) are then given by

�K (ε) = (k0, k1, k2 + ∂K2, k3 + ∂K3, k4 + ∂K4). (4.30)

We use (2.5) and (4.30) to obtain the positions of the spins in the complex plane
for the meshes in P(k0, k1). Hence, as k0 and k1 run over the values from −J to
J we obtain the positions of the spins in both odd and even sublattices shown in
Fig. 5. This figure has been plotted using Maple.

4.10. Summary

Consider the parallelograms P(k j , k j+1) which contains all points z ∈ C such
that K j (z) = k j and K j+1(z) = k j+1, cf. (2.4). The configurations of two such par-
allelograms are considered to be the same, if they contain the same number of spin
sites and the corresponding sites have the same difference vectors. The different
configurations do not depend on the exact locations of the relevant grid lines or
their intersections. However, whenever a grid line or an intersection moves in or out
of the parallelogram P , the configuration changes. The above analysis shows that
there are only 24 allowed configurations, with 6, 7, 8, 9, 10 and 12 sites inside P .

The configuration of P(k j , k j+1) is uniquely determined by the values of
{α̂(k j+1)} and {β̂(k j )} defined in (4.4). By examining the locations of the relevant
grid lines and their intersections, we find that the unit square, with {α} and {β}
along the horizontal and vertical axes, is divided into 24 regions, corresponding
to the 24 possible configurations of the parallelogram P . This is shown Fig.
7(a), and the 24 configurations of P are shown in Fig. 6. Using the theorem of
Kronecker (62), we find that the area A(m) of the mth region is actually proportional
to the probability for the mth configuration to occur. Even though the pentagrids
and configurations of the P(k j , k j+1)’s are different for different choices of the
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shifts γ j , the area A(m) is independent of these shifts and is the same for all regular
pentagrids.

In each parallelogram P(k j , k j+1), a reference integer vector is chosen whose
components are given by (4.3) and (4.5). The difference vectors with respect to
this reference vector are defined in (4.9) and calculated for all of the sites inside
P . The number of sites N (m), the area A(m), and the difference vectors ∂ �K for
the N (m) spin sites for m = 1 . . . 24 are listed in Fig. 6, Eq. (4.27) and Tables
III(a) and III(b), respectively.

5. SUSCEPTIBILITY

There are three Z -invariant Ising models that can be defined on the vertices
of the Penrose rhombus tiles using the prescriptions of Sec. 2. Model 1 has spins
on all odd sites only, interacting along the diagonals of the tiles, as is illustrated in
Fig. 5. Model 2 is defined similarly with spins only on the even sites. Model 3 has
all sites of the Penrose tiling, but the even and odd sites are decoupled, with the
odd spins interacting as in model 1 and the even spins as in model 2. We will see
that the three models have the identical wavevector-dependent susceptibility χ (q)
per spin site in the thermodynamic limit.

The physical positions of the spins have been expressed in (2.5) as complex
numbers depending on the integer vectors �K (z) of the meshes. Let q be a complex
number and q = qx + iqy so that q∗ denotes its complex conjugate (while q =
(qx , qy)), then the q-dependent susceptibility is

kBT χ (q)= lim
M→∞

1

NM2

∑

�K (z∈C)

∑

�K (z′∈C)

cos Re

{

q∗
4∑

j=0

[K j (z
′) − K j (z)]ζ j

}

×[〈σ �K (z)σ �K (z′)〉 − 〈σ �K (z)〉〈σ �K (z′)〉
]=

⎧
⎪⎨

⎪⎩

2χ̂o(q), (model1),

2χ̂ e(q), (model2),

χ̂o(q) + χ̂ e(q), (model3).

(5.1)

Here the double sums denoted by �K (z ∈ C) are over all the odd spin sites in
model 1, over all the even sites in model 2, and over all sites in model 3. In the
last case, since the spins on the odd sublattice do not interact with those on the
even sublattice, the q-dependent susceptibility χ (q) becomes the sum of two parts:
χ̂o(q) denoting the contribution from the odd sublattice and χ̂ e(q) from the even
sublattice. For model 3 the average number of spin sites per parallelogram was
given in (4.29) as N = 5p. For models 1 and 2 this number becomes N = 5p/2,
explaining the extra factors 2 in the last member of (5.1).

We shall first consider χ̂o(q) and show later that χ̂ e(q) is equal to it, implying
that the susceptibilities of the three models are indeed equal.
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5.1. Calculation of χo(q)

We again split the sum over all odd spin sites into two parts as in (4.28), and
let �K o(z ∈ P) run over all odd spins in parallelogram P . Consequently,

χ̂o(q) = lim
M→∞

1

NM2

∑

all P

∑

�K o(z∈P)

∑

all P ′

∑

�K o(z′∈P ′)

U ( �K o(z′), �K o(z)), (5.2)

where

U ( �K o(z′), �K o(z)) = 〈σ �K o(z)σ �K o(z′)〉ccos Re

{

q∗
4∑

n=0

[
K o

n (z′) − K o
n (z)

]
ζ n

}

, (5.3)

with 〈σσ ′〉c denoting the connected pair correlation function, subtracting the
contribution from the spontaneous magnetization.

Now we let P = P(k j , k j+1) and P ′ = P(k j +	, k j+1+	′). As M → ∞, 	

and 	′ are kept fixed, and k j and k j+1 vary from −∞ to ∞, all the P’s and P ′’s
are counted once. It is also evident that the different choices of j correspond to
choosing one of five orientations for the parallelograms, and they should give the
same q-dependent susceptibility.

In (4.2) we defined z = z(ε) for z ∈ P . Similarly, for z′ ∈ P ′, we let

z′ = i [ζ j (k j+1+	′−γ j+1−ε′
j+1) − ζ j+1(k j +	−γ j −ε′

j )]

sin(2π/5)
≡ z′(ε′), (5.4)

so that z′ ↔ ε′ = (ε′
j , ε

′
j+1) and 0 < ε′

j , ε
′
j+1 < 1. The corresponding integer

vectors �K (z′) = �K (z′(ε′)) ≡ �K ′(ε′) also have two fixed components K ′
j (ε

′) =
k j +	 ≡ k ′

j and K ′
j+1(ε′) = k j+1+	′ ≡ k ′

j+1. Now, following (4.4), we let

α′ ≡ α̂(k ′
j+1) = p−1(k j+1+	′−γ j+1) + γ j + γ j+2 = α + p−1	′,

β ′ ≡ β̂(k ′
j ) = p−1(k j +	−γ j ) + γ j+4 + γ j+1 = β + p−1	. (5.5)

According to (4.3) and (4.5) the reference integer vector �k ′ for P ′ is chosen to
have components,

k ′
j+2 = �α′ − k j − 	 = k j+2 + δ j+2 + �p−1	′� − 	,

k ′
j+3 = −�α′� − �β ′� = k j+3 − δ j+2 − �p−1	′� − δ j+4 − �p−1	�,

k ′
j+4 = �β ′ − k j+1 − 	′ = k j+4 + δ j+4 + �p−1	� − 	′, (5.6)
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in which8

δ j+2 = �{α} + {p−1	′}�, δ j+4 = �{β} + {p−1	}�. (5.7)

Substituting (5.4) into (2.4) we obtain for m = 2, 3, 4

K ′
j+m(ε′) = k ′

j+m + ∂K ′
j+m(ε′), ∂K ′

j+m(ε′) = �λ′
j+m(ε′)�, (5.8)

where

λ′
j+2(ε′) = {α′} + ε′

j − p−1ε′
j+1, λ′

j+4(ε′) = {β ′} + ε′
j+1 − p−1ε′

j . (5.9)

and

λ′
j+3(ε′) = p−1(ε′

j + ε′
j+1) − {α′} − {β ′} + 1. (5.10)

Comparing (5.8) to (5.10) with (4.9) to (4.11), we find that the dependence of
λ′

j+m(ε′) on {α′} and {β ′} is the same as the dependence of λ j+m(ε) on {α} and
{β}. Consequently, the configurations of P ′ depend on {α′} and {β ′} in the same
way as the configurations of P on {α} and {β}. Therefore, the position of {α′}
and {β ′} in the unit square in Fig. 7(a) with {α′} and {β ′} along the horizontal and
vertical axes uniquely determines the configuration of P ′. The difference vectors
∂ �K ′(ε′) for the sites in P ′, which is in one of the 24 configurations, are again given
in Tables III(a) and III(b).

The above results are valid for all spin configurations in P and P ′, but we
shall consider only the odd spins at first. By examining Tables III(a) and III(b),
we can find that the odd spin configurations of the parallelograms are simpler,
because several connected regions—see C(2) to C(5), or C(9) to C(11) in Fig. 7(a)
as examples—have the same odd spin configurations. In fact, there are only eight
distinct odd spin configurations. In Fig. 7(b), the regions for these 8 odd spin
configurations are shown in the unit square whose axes are the {α} and {β}
directions.

Listed in Table IV are the number of odd sites N̂ (m) in P , the region of validity
R(m), and the area Â(m) of the mth odd configuration for all m = 1, . . . , 8. In
the mth odd configuration, the difference vectors of the N̂ (m) spins are denoted
by ∂ �K [m,n] for n = 1, . . . , N̂ (m). They are equal to the difference vectors ∂ �K o

of the odd sites in some configuration C(l), listed in Tables III(a) and III(b) for
l = 1, . . . , 24. In the last column of Table IV it is indicated which C(l)’s correspond
to a given m.

Let the distances 	 and 	′ between the two parallelograms P and P ′ be fixed,
but k j and k j+1 vary from −∞ to ∞. Then {α′} and {β ′} given by (5.5) are also

8 From the first members of (5.6) and (4.3) we find that δ j+2 = �α′ − �α − �p−1	′� =
�α + p−1	′ − �α − �p−1	′� = �{α} − 1 + {p−1	′} = �{α} + {p−1	′}�. For the last two steps
here and the remaining steps in the derivation of (5.6) and (5.7) we must make explicit use of
the fact that α, α′, β and β ′ are not integer for a regular pentagrid.
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Table IV. The Eight Regions for the Odd Sublattice

m N̂ (m) Â(m) R(m)
∂ �K [m,n] = ∂ �K o

1 ≤ n ≤ N̂ (m)

1 4 1
2 p−4 p−1 < {α} < 1 & p − {α} < {β} < 1 ∂ �K o in C(1)

2 3 1
2 p−1 0 < {α} ≤ p−1 & 1 − p−1{α} < {β} < 1;

p−1 ≤ {α} < 1 & p(1 − {α}) < {β} < p − {α}
∂ �K o in C(2) or
C(l), l=3,4,5,9,10,11

3 4 1
2 p−3 0 < {α} ≤ p−1 & 1 − {α} < {β} < 1 − p−1{α};

p−1 ≤ {α} < 1 & 1 − {α} < {β} < p(1 − {α})
∂ �K o in C(6),
C(12) or C(15)

4 3 1
2 p−3 0 < {α} ≤ p−2 & 1 − p{α} < {β} < 1 − {α};

p−2 ≤ {α} < 1 & p−1(1 − {α}) < {β} < 1 − {α}
∂ �K o in C(7),
C(13) or C(16)

5 5 1
2 p−4 0 < {β} < p−2 & p−1(1 − {β}) < {α} < 1 − p{β} ∂ �K o in C(8) or C(17)

6 5 1
2 p−4 0 < {α} < p−2 & p−1(1 − {α}) < {β} < 1 − p{α} ∂ �K o in C(14) or C(18)

7 7 1
2 p−5 0 < {α} ≤ p−2 & p−1 − {α} < {β} < p−1(1 − {α});

p−2 ≤ {α} < p−1 & p−1 − {α} < {β} < 1 − p{α} ∂ �K o in C(19)

8 5 1
2 p−2 0 < {α} < p−1 & 0 < {β} < p−1 − {α} ∂ �K o in C(20) to C(24)

everywhere dense and uniformly distributed in the interval (0, 1). The area Â(m)
is again the probability or frequency of the mth configuration. From (5.5) we find

{α′} =
{

{α} + a for {α} + a < 1

{α} + a − 1 for {α} + a ≥ 1

}

, a = {p−1	′},

{β ′} =
{

{β} + b for {β} + b < 1

{β} + b − 1 for {β} + b ≥ 1

}

, b = {p−1	}. (5.11)

The plot of the eight regions for the odd configurations of P = P(k j , k j+1) has
been given in Fig. 7(b). The plot for P ′ = P(k j +	, k j+1+	′) is the same, only
now with {α′} and {β ′} along the axes. However, if the eight regions are replotted
with {α} and {β} along the horizontal and vertical axes, then we obtain unit squares
as shown in Fig. 8(a) [for the special case of 	 = 2 and 	′ = 3]. Because of the
relation (5.11), we find that Fig. 8(a) can be obtained from Fig. 7(b) by cutting a
horizontal slice with width b from the bottom of Fig. 7(b), and pasting it on the top;
then cutting a vertical slice of width a from the left and pasting it to the right. After
the cutting and pasting, the connected region R(m) for P ′ in Fig. 7(b) becomes
R′(m) in Fig. 8(a), which—for 	 �= 0 or 	′ �= 0—may consist of disjointed pieces
pasted in up to four different sections of the unit square. The probability for P ′
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Fig. 8. (a) The eight odd spin configurations in P(k j + 2, k j+1+3) plotted with {α} and {β} as the
horizontal and vertical axes. (b) Overlapping the plot in part (a) with Fig. 7 (b) we can determine the
joint probability Am,m′ (2, 3) for P(k j , k j+1) to be in the mth configuration and P(k j +2, k j+1+3) in
m′th configuration, with m, m′ = 1, . . . , 8, geometrically. The area of the shaded region represents the
probability for m = 8 and m′ = 2.

to be in the mth configuration is still the area Â(m) = area(R(m)) = area(R′(m)),
which in the latter case, could be a sum of areas of disjointed pieces.

For fixed 	 and 	′ [chosen to be 	 = 2 and 	′ = 3 in Fig. 8(a)], the
position of α = α̂(k j+1) and β = β̂(k j ) in the unit square shown in Fig. 7(b)
uniquely determines the configuration of P(k j , k j+1), while the position of
α′ = α̂(k j+1+	′) and β ′ = β̂(k j +	) in Fig. 8(a) determines the configuration
of P(k j +	, k j+1+	′). As k j and k j+1 run over all the values from −∞ to ∞,
we find from Kronecker’s theorem(62) that every point in either Fig. 7(b) or
Fig. 8(a) is equally probable. However, the positions of (α, β) and (α′, β ′) are
completely correlated by the shift (a, b) in (5.11), which is fixed as long as 	

and 	′ are unchanged. Thus, the joint probability for P(k j , k j+1) to be in the mth
configuration and P(k j +	, k j+1+	′) to be in the m ′th configuration is the area
of the intersection of the two regions R(m) and R′(m ′), and is denoted by

Am,m ′ (	, 	′) = area(R(m) ∩ R′(m ′)). (5.12)

By superimposing Fig. 7(b) on top of Fig. 8(a), we obtain Fig. 8(b). This figure
gives the intersections of all the regions of Fig. 7(b) with all the regions of Fig.
8(a), and the joint probabilities can be read off as the areas of these intersections.

For different values of 	 and 	′, we get different values of the width a given
in (5.11) of the vertical slice in Fig. 8(a) and also of the width b of the horizontal
slice. After cutting and pasting the difference slices, the resulting figures are
very different, so are the superimposed figures. Thus, the area of intersection
Am,m ′ (	, 	′) depends on the choice of 	 and 	′. However, just as Â(m) and Â(m ′)
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do not depend on the shifts γ j , Am,m ′ (	, 	′) also does not depend on these shifts.
Moreover, it is easily seen that this joint probability Am,m ′ (	, 	′) is not only the
same for all the different regular pentagrids, but also the same for the different
orientations of the parallelograms (i.e. different choices of j = 0, . . . , 4).

We let �K [m,n] denote the nth integer vector in the mth odd configuration for
odd spins inside P , where n = 1, . . . , N (m) and m = 1, . . . , 8. Similarly �K [m ′,n′]

denotes the n′th integer vector of the m ′th odd configuration of odd spins inside P ′,
with n′ = 1, . . . , N (m ′) and m = 1, . . . , 8. From Tables III(a), III(b) and IV, the
possible difference vectors ∂ �K [m,n] and ∂ �K [m ′,n′] for two spins in P and P ′ may be
found. Adding, as in (4.9) and (5.8), these to their corresponding reference integer
vectors, with three of their components given in (4.3), (4.5) and (5.6), we obtain
the two integer vectors �K o(z) = �K [m,n] for the spin in P and �K o(z′) = �K [m ′,n′] for
the spin in P ′. In (5.1) and (5.3) we only need their difference

�K o(z′) − �K o(z) = �K [m ′,n′] − �K [m,n] ≡ (	0, 	1, . . . , 	4). (5.13)

We find from (4.9), (5.6) and (5.8) that

	 j = 	, 	 j+1 = 	′,

	 j+2 = δ j+2 + �p−1	′� − 	 + ∂K [m ′,n′]
j+2 − ∂K [m,n]

j+2 ≡ 	′′,

	 j+3 = −δ j+2 − δ j+4 − �p−1	′� − �p−1	� + ∂K [m ′,n′]
j+3 − ∂K [m,n]

j+3 ≡ 	′′′,

	 j+4 = δ j+4 + �p−1	� − 	′ + ∂K [m ′,n′]
j+4 − ∂K [m,n]

j+4 ≡ 	′′′′. (5.14)

It is easy to see from (5.7) and (5.11) that

δ j+2 =
{

0 if 0 ≤ {α} < 1 − a,

1 if 1 − a ≤ {α} < 1,

δ j+4 =
{

0 if 0 ≤ {β} < 1 − b,

1 if 1 − b ≤ {β} < 1,
(5.15)

which shows that in the four sectors of the unit square shown in Fig. 8(b), the δi

pairs are different. As a and b are functions of 	 and 	′ only, and the entries in
Tables III(a), III(b) and IV are also independent of j , the results in (5.14) are easily
seen to be functions of 	 and 	′, and of {α} and {β}, but they are independent of j .
Therefore, we use the primed variables 	, . . . , 	′′′′ to denote these j-independent
values of 	 j , . . . , 	 j+4, i.e.

�̃ ≡ [	, 	′, . . . , 	′′′′] = [	 j , 	 j+1, . . . , 	 j+4]. (5.16)

For different choices of j , [	0, 	1, 	2, 	3, 	4] is just a cyclic permutation of �̃.
If we let the distance vector (	, 	′) between the two parallelograms P =

P(k j , k j+1) and P ′ = P(k j +	, k j+1+	′) in (5.2) be fixed, while letting both k j
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and k j+1 vary from −∞ to ∞ (which is equivalent to M → ∞), then the paral-
lelograms P and P ′ each are in one of eight different odd configurations. Since
the joint probability for P being in the mth configuration and P ′ in the m ′th con-
figuration is Am,m ′ (	, 	′) given in (5.12), the double sum in (5.2) can be rewritten
as

χ̂o(q) = lim
M→∞

1

NM2

∑

	,	′

∑

k j ,k j+1

∑

�K o(ε)

∑

�K o ′(ε′)

U ( �K o(ε), �K o′(ε′))

= 1

N
∑

	,	′

8∑

m=1

8∑

m ′=1

Am,m ′ (	, 	′)
N (m)∑

n=1

N (m ′)∑

n′=1

U ( �K [m,n], �K [m ′,n′]). (5.17)

with N = 5p, cf. (4.29). Using (3.1) and (5.13), we find (5.3) becomes

U ( �K [m,n], �K [m ′,n′]) = cos

[

Re

(

q∗
4∑

k=0

	kζ
k

)]

〈σσ ′〉c
[	0,	1,...,	4], (5.18)

which is different for different j in view of (5.16). Since the correlation functions
have the cyclic property shown in (3.3), and χ̂o(q) can be evaluated by choosing
parallelograms P and P ′ in (5.2) oriented in any one of the five directions (any
choice of j), we can rewrite χ̂o(qx , qy) in a more symmetric way by expressing it
as the sum over the five different orientations j , and then dividing the result by 5.
This means,

χ̂o(q) =
∞∑

	=−∞

∞∑

	′=−∞
χ̂o(q)	,	′ (5.19)

where (5.17) to (5.16) and (3.3) are used to find

χ̂o(q)	,	′ = 1

N

8∑

m=1

8∑

m ′=1

Am,m ′ (	, 	′)
N (m)∑

n=1

N (m ′)∑

n′=1

c(q, �̃) 〈σσ ′〉[	,	′,	′′,	′′′,	′′′′],

c(q, �̃) = 1

5

5∑

j=1

cos Re
[
q∗ζ j (	 + 	′ζ + 	′′ζ 2 + 	′′′ζ 3 + 	′′′′ζ 4)

]
. (5.20)

It satisfies the following identities,

χ̂o(q)−	,−	′ = χ̂o(q)	,	′ , χ̂o(q∗)	′,	 = χ̂o(q)	,	′, (5.21)
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in which q∗ ↔ (qx ,−qy). The former identity in (5.21) is easily seen as a conse-
quence of the reflection symmetry in the correlation function 〈σσ ′〉 = 〈σ ′σ 〉; the
latter one is due to five-fold rotation and reflection symmetry.9

In the actual calculation, because δ2 and δ4 generally differ in four sectors of
the unit square, the contributions to the susceptibility from these different sectors
are evaluated separately.

5.2. Results

To evaluate the wavevector-dependent susceptibility (5.19), (5.20), we can
compute the Am,m ′ (	, 	′) as the overlap area (5.12) and the 	’s from (5.14). In
Table II and Eq. (3.2) in Sec. 3 we have expressed the pair-correlation function
〈σσ ′〉[	0,...,	4] in terms of Baxter’s universal functions g, (14) which can be evaluated
using methods in our earlier work. (53,54,60)

Near the critical point k = 1 the leading asymptotic behavior of the pair-
correlation function is the same Painlevé III or V scaling function(53,60) as in the
uniform rectangular lattice. (45) Therefore, the scaling behavior of the central peak
of χ (q) in our Penrose Ising model is also known(60,63,64) to be the same as for the
regular Ising model.

More interesting is the incommensurate behavior of χ (q) as a function of
wavevector q and how it changes with temperature or k. At the critical point we
expect χ (q) to be a function that has everywhere dense 7/4-th power divergencies,
but is locally integrable. It is nontrivial to show this directly, but this conclusion
seems to impose itself as one approaches the critical point from either side.

Since the correlation functions decay exponentially away from the critical
point, we find that the χ̂o(q)	,	′ are rapidly decreasing functions of 	 and 	′.
Putting terms of about the same order of magnitude together, we find

χ̂o(q) = χ̂o(q)0,0 +
∞∑

	=1

S	, S	 = 2
	∑

n=−	+1

[χ̂o(q)	,n + χ̂o(q∗)	,n−1], (5.22)

using both identities in (5.21). We shall give density plots of several cases next,
displaying the temperature dependence more clearly. However, it must be said that
we can calculate χ̂o(q) to very high precision in the cases shown, which fact is
not clear from looking at these density plots.

We shall give plots both above the critical temperature Tc, (k> ≡ k < 1),
and below Tc, (k< ≡ 1/k < 1). The value of modulus k corresponds to the row

9 In particular, one can start with the reflection symmetry about the direction of the k j+3 grid-line and
its action on the parallelograms P(k j , k j+1) and P(k′

j , k′
j+1). One arrives at 〈σσ ′〉[	,	′,	′′,	′′′,	′′′′] =

〈σσ ′〉[	′,	,	′′′′,	′′′,	′′]. Replacing j → 1 − j in (5.20) then completes the proof of the second identity
in (5.21).
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Fig. 9. Density plot of the q-dependent susceptibility showing 1/χ (qx , qy ) for the Z-invariant Ising
model on a Pentagrid Lattice (Penrose Tiles) at very low temperature: (a) ξ ≈ 0.5, or k< = .04847302;
(b) ξ ≈ 1, or k< = .2363562, both for T < Tc.

correlation length(44)

ξ = 1/|arsinh(1/
√

k) − arsinh(
√

k)| (5.23)

of the symmetric square-lattice Ising model for T > Tc. For T < Tc the true value
of this row correlation length is ξ/2 with ξ again given by (5.23). (44,45)

At very low temperature, we only need to consider S	 for very small 	. For
	, 	′ ≤ 2 the joint probabilities Am,m ′ (	, 	′) can be easily evaluated by hand as
it only involves the calculation of areas of triangles and rectangles. For k< =
.04847302, which corresponds to ξ ≈ 1/2, we find S	 < 10−10 for 	 > 2. The
density plot for 1/χ̂o(q) is shown in Fig. 9(a) for −4π ≤ qx , qy ≤ 4π where
q = (qx , qy). We find ten-fold symmetry, corresponding to the five-fold symmetry
of the Penrose tiling.

For k< = .2363562 (ξ ≈ 1), we find it necessary to consider all S	 for 	 ≤ 4.
As the temperature increases, larger and larger 	’s are needed. To evaluate the joint
probability by hand is no longer feasible. To symbolically program the calculation
for any values of 	 and 	′ is highly nontrivial, as there are many different situations
to take into account. It took us several months to sort out all cases, programming
the calculation using Maple.

A density plot for k< = .2363562 is shown in Fig. 9(b). Plots of 1/χ̂o(q)
for ξ ≈ 4 and ξ ≈ 8 are shown in Fig. 10(a) and (b), together with corresponding
plots for the dual cases with T > Tc in Fig. 10(c) and (d). We can see clearly
that the number of visible peaks increases as T → Tc and that this effect is
more pronounced as Tc is approached from above. In Fig. 11, a density plot for
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Fig. 10. Density plots of the q-dependent susceptibility, plotting 1/χ (q) versus qx and qy : (a) k< =
.7018662 or ξ ≈ 4; (b) k< = .8379187 or ξ ≈ 8, both for T < Tc. Two corresponding plots for the
dual models, with T > Tc and identical values of k> and ξ , are given in (c) and (d).

1/χ̂o(q) at ξ = 2 is given for −16π ≤ qx , qy ≤ 16π , and we can already see some
evidence for the quasiperiodic pattern of the q-dependent susceptibility in the full
(qx , qy)-plane.

5.3. The q-Dependent Susceptibility χ e(q)

Finally, we show that the q-dependent susceptibility χ̂ e(q) of the even sublat-
tice is identical to χ̂o(q) of the odd sublattice. From Tables III(a) and III(b), we find
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Fig. 11. Density plot of the q-dependent susceptibility showing 1/χ (q) at k< = .4912758 or ξ ≈ 2
and T < Tc.

there are 16 different even configurations for P(k j , k j+1). The corresponding 16
regions are plotted in the unit square with {α} and {β} along the axes in Fig. 12(a).
The regions for the 8 odd spin configurations of P(k j +1, k j+1+1) are also plotted
with {α} and {β} as axes in Fig. 12(b). It is easy to see that after inverting one of
the squares, the two figures are identical up to labeling.

Furthermore, looking at Fig. 12(b), we see that the five disjoint regions
2, . . . , 6 become connected, if we impose periodic boundary conditions on the
square. This “wrapping on a torus” is consistent with moving the slices as discussed
below Eq. (5.11). We next compare how the even regions in Fig. 12(a) relate under
the same periodic boundary conditions, to see if this is somehow true here also.
As first examples we look at the two even configurations e(7) and e(13) and
find that they have the same number of sites, and their difference vectors are
related by

δ �K e,7 = (0,−1, 1) + δ �K e,13. (5.24)
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Fig. 12. (a) The sixteen even spin configurations of P(k j , k j+1) plotted with {α} and {β} as the
horizontal and vertical axis. (b) The eight odd spin configurations of P(k j +1, k j+1+1) plotted with
{α} and {β}.

For the other regions, we similarly find equal numbers of sites and

δ �K e,10 = (1,−1, 0) + δ �K e,1, δ �K e,3+m = (1,−1, 0) + δ �K e,14+m,

δ �K e,6 = (0,−1, 1) + δ �K e,1, δ �K e,8+n = (0,−1, 1) + δ �K e,15+n, (5.25)

where m = 0, 1, 2 and n = 0, 1.
The difference vectors of the odd configurations in Fig. 12(b) are also related

to those of the even configurations in Fig. 12(a), i.e.

δ �K e,1 = (1,−1, 1) − δ �K o,2, δ �K e,2 = (1,−1, 1) − δ �K o,1,

δ �K e,11+n = (0, 1, 0) − δ �K o,8−n, n = 0, . . . , 5. (5.26)

If the dependences of difference vectors on the values of {α} and {β} are included
in the equations, we may relate the even spins in P(k j , k j+1) with the odd spins in
P(k j +1, k j+1+1) by

δ �K e[{α}, {β}] = (1,−1, 1) − (δ2,−δ2−δ4, δ4) − δ �K o[{−α}, {−β}], (5.27)

where 1 − {x} = {−x}, for x not an integer, and

δ2 = [1 − {α} + p−1], δ4 = [1 − {β} + p−1]. (5.28)

Consider the pentagrid with γ j → −γ j and denote its parallelograms by
P̄(k j , k j+1) such that

ᾱ(−k j+1) = −α(k j+1), β̄(−k j ) = −β(k j ). (5.29)

Then it is easy to show that

δ2 + �−α(k j+1)� = �ᾱ(1−k j+1)�, δ4 + �−β(k j )� = �β̄(1−k j )�. (5.30)
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Now, the integer vectors of even spins in P(k j , k j+1) given by (4.9), (4.3) and (4.5)
can be shown to relate to the integer vectors of the odd spins in P̄(1−k j , 1−k j+1)
by

�K e(ε′) = (1, 1, 1, 1, 1) − �K o(ε). (5.31)

This equation is consistent with the fact that the index of the odd spins is either
1 or 3, while the index of the even spins is either 2 or 4. Since the even spins
in the original pentagrid are related to the odd spins in a different pentagrid,
and the joint probabilities are independent of shifts, we have shown that the
susceptibility of the even sublattice is identically the same as the one of the odd
sublattice.

6. CONCLUSIONS AND FINAL REMARKS

In this paper we have presented a systematic way of evaluating the averaged
pair-correlation function of a Z -invariant ferromagnetic Ising model with spins
on half the sites of a Penrose tiling and Ising interactions across the diagonals of
the rhombuses.

Next, we have found that the q-dependent susceptibility of this model is
a superposition of incommensurate everywhere-dense peaks, though not many
peaks are visible at temperatures very far away from Tc. For T < Tc these peaks
add a diffuse background to the Bragg peaks due to the spontaneous magnetization.
Since the S	 in (5.22) consists of 4	 terms of the same order of magnitude, we
compare their contributions. We find that the number of peaks of S	 increases as 	

increases, but that the numbers at fixed 	 are almost independent of temperature,
even though the magnitudes of the peaks change as the temperature varies.

As T → Tc, the correlations decay more and more slowly, so the S	’s increase,
and more and more of these S	’s are to be included in the numerical evaluation
of the q-dependent susceptibility, which accounts for the ever-increasing number
of peaks. This is unlike the behavior of the Fibonacci Ising models, considered
earlier, (53,54) where the ferromagnetic aperiodic Fibonacci lattice behaves almost
like the regular Ising model.

Moreover, the q-dependent susceptibility is not a periodic function of qx or
qy . This behavior is different from that of aperiodic models defined on regular
lattices. (53) This is because, when the lattice is aperiodic, we cannot separate the
average of the correlation functions from the exponential (or cosine) terms, which
contain the information about the lattice structure, as can be seen from (5.19) and
(5.20).

At Tc, the q-dependent susceptibility has everywhere-dense divergences with
the Ising exponent 7/4, but is still locally integrable. Away from Tc the χ (q)
is a continuous function. The Bragg peaks below Tc form a set of everywhere-
dense Dirac delta functions of various strengths, but their sum is also locally
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integrable. These are strange objects and de Bruijn initiated their mathematical
study. (65)

One of the main results of the current paper is that it provides a new method
for doing calculations of probabilities on Penrose tilings. In Sec. 4, the calculation
of the joint probability of the configurations of two parallelograms on the pentagrid
is reduced to linear programming.

Penrose tilings may be obtained by projecting certain subsets of the Z
5 lattice

into the plane. (5) The frequencies of the different types of vertices are then given
as areas in the orthogonal spaces. (5) This method, which is known as the cut-
and-project method, has been applied and generalized by many authors.(7,8,66−76)

The equivalence of the projection method and a generalized grid method has
been demonstrated.(66−68) The positions of the Bragg peaks have been worked
out,(7,8,69−72) together with the values of probabilities of local configurations. The
Penrose tilings can even be obtained from projections in a four-dimensional root
lattice. (75,76)

It would be interesting to obtain results for joint probabilities similar to ours
also by cut-and-project methods. This would generalize the windowing method of
Baake and Grimm.(77) We have not pursued this here, as our model is defined in
terms of rapidity lines on the pentagrid.

Another possible generalization of our work is to consider Penrose tilings that
are periodic in either one or both directions. Finite approximants to the aperiodic
Penrose tiling have been constructed through periodic pentagrids or projection
methods.(73,78−80)

The mathematician Robinson has brought to our attention an exercise in
the book by Grünbaum and Shephard(81) where a tiling with Penrose rhombuses
can be cut into patches, and then converted into an aperiodic set of 24 Wang’s
tiles. We have found that each patch in the Penrose tiling described in the ex-
ercise is in fact the image of a parallelogram under the mapping (2.5). Thus
these 24 configurations of the parallelogram can be easily converted into Wang’s
tiles.

Finally, in our previous studies (53) we have examined the q-dependent sus-
ceptibility χ (q) of some quasiperiodic Ising models on the square lattice defined
in terms of Fibonacci sequences. It may be of interest to study models based
on other sequences such as the aperiodic sequences studied by de Bruijn (61) or
Tracy. (50) We may ask what effect this has on the mixed interaction cases and also
if it makes any difference for purely ferromagnetic models.
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and Order, Vol. 3, M. V. Jarić and D. Gratias, eds. (Academic Press, Boston, 1989), pp. 37–104.

57. M. Gardner, Extraordinary nonperiodic tiling that enriches the theory of tiles, Scientific American
236#1:110–121 (January 1977).

58. F. Y. Wu, Ising model with four-spin interactions, Phys. Rev. B 4:2312–2314 (1971).
59. L. P. Kadanoff and F. J. Wegner, Some critical properties of the eight-vertex model, Phys. Rev. B

4:3989–3993 (1971).
60. H. Au-Yang and J. H. H. Perk, Correlation functions and susceptibility in the Z -invariant Ising

model, in MathPhys Odyssey 2001: Integrable Models and Beyond, M. Kashiwara and T. Miwa,
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